2025年度レーザーによるものづくり中核人材育成講座 講義カリキュラム

【半日の場合】1限目14:00~15:30 2限目15:45~17:15 【終日の場合】1限目9:45~11:15 2限目11:30~13:00 3限目14:00~15:30 4限目15:45~17:15

	ļ ļ	4.15	- fo	60. 6	プラス .	A) stem	X 1000		
Н	コマ	会場	日程	総合	実習	分類	主題	キーワード	講師
	0		6/25				開講式・オリエンテーション	プロジェクトコーディネータ挨拶	
1	1		(水)	0	0	レーザー加工の基礎	レーザー加工技術概要	ものづくりにおけるレーザー技術の歴史的意義、主なレー ザー機器、各種レーザ加工技術の発展、その応用事例	長谷川和男:光産業創成大学院大学
	2		13:45開始			レーザー加工の基礎	レーザー光学の基礎	レーザー加工に関する基礎 ビーム、偏光、光ファイバ、波長変換等	長谷川和男:光産業創成大学院大学
	3	1	SE 6/26 (木) 9:45開始	0	Ο	レーザー加工の基礎	光・レーザーと物質の相互作用	光吸収・反射、物質変化、電磁波、熱反応、プラズマ反応	藤田和久:光産業創成大学院大学
	4					レーザー加工の基礎	レーザー光源総論	産業用レーザー(CO2、YAG、レーザ発振原理、(超短)パルス・ CW・UV・短波長・NIR、マクロ加工・ミクロ加工、各種材料概論	浅川雄一 : SOCIO
2	5					レーザー加工の基礎	半導体レーザー	半導体レーザー(近赤外LD、青色LD等)、波長合成技術	松本聡:浜松ホトニクス株式会社
	6					レーザー加工の基礎	レーザ加工の安全	安全・安全対策の基本、安全基準と規制、事例説明	橋新裕一:元 近畿大学 教授
	7		7/10	_	0	レーザー加工の基礎	光学系・光学設計	溶接、切断、微細加工等のレーザー加工機用加工ヘッドの設計、製作	紫藤昭博:シグマ光機株式会社
3	8		(木) 14:00開始	O		レーザー加工の基礎	加工光学系	レーザー光学系、ピーム制御、熱レンズ効果、光学素子、 コーティング、高機能光学素子(DOE)	岡田健:住友電気工業株式会社
	9	ŀ				レーザー加工技術	レーザー切断1	レーザー切断機の基礎と軟鋼・ステンレス他の切断原理、	金岡優:愛知工業大学
	10	FUSE	7/11 (金) 9:45開始		0			穴あけ(ピアッシング)等	(元三菱電機株式会社) 金岡優:愛知工業大学
4	10			0		レーザー加工技術	レーザー切断2	レーザー切断技術の応用と切断機の最新機能 短パルスレーザー、パルス発生、光吸収機構、超短パルス	(元三菱電機株式会社) 藤田雅之:
	11					レーザー加工技術	パルスレーザー加工1	レーザー加工	公益財団法人レーザー技術総合研究所
	12					レーザー加工技術	パルスレーザー加工2	超短パルスレーザー加工	藤田雅之: 公益財団法人レーザー技術総合研究所
_	13		8/28	0	0	レーザー加工技術	レーザー溶接の基礎	スポット溶接、ビード溶接、レーザー溶接現象、レーザー誘起ブルーム、キーホール挙動、溶融池内の湯流れ、スパッタ、ポロシティ、レー	片山 聖二:大阪大学 名誉教授 株式会社ナ・デックス
5	14	1	(木) 14:00開始			レーザー加工技術	各種金属の溶接特性	ザニ溶接裏用化例 各種金属の物理的特性、各種金属の溶接性、亜鉛めっき鋼、	片山 聖二:大阪大学 名誉教授
	15					. # hr##	金属材料の基礎	高張力鋼、ステンレス鋼、アルミニウム合金、鋼、凝固割れ 表面処理の種類、金属材料の基礎、金属硬化原理、結晶構造	株式会社ナ・デックス 田中浩司:大同大学
	15	FUSE	0 /00	0	0		加熱プロセス	平衡状態図、レーザー焼入れ、事例と他工法比較 レーザーピーニング・レーザーフォーミング、塑性変形、残	
6	16		8/29 (金)			レーザー加工技術	レーザー塑性加工	留圧縮応力、疲労強度、耐腐食性、金型 加工装置、レーザー加工における赤外波長と青色波長の適用	部谷学:近畿大学
	17		9:45開始			レーザー加工技術	半導体レーザー加工	例	武田晋:レーザーライン株式会社
	18					レーザー加工の基礎	ファイバーレーザー	ファイバーレーザー光源・加工機開発、レーザー加工技術 ファイバーレーザー短パルスレーザー	藤崎晃:古河電気工業株式会社
7	19	エンシュ ウ(株)	9/11(木) 14:00開始	_	0	レーザー加工技術	レーザー加工実習1 (対面式のみ)	レーザー加工機を用いた現地実習 切断・溶接・焼入れ・溶着 協力機関:エンシュウ株式会社 等	エンシュウ株式会社
	20				0	レーザー加工技術	レーザー表面処理	レーザーアブレーション、テクスチャリング、機能性発現等	閻紀旺:慶應義塾大学
	21	FUSE	9/12 (金) 9:45開始	0		レーザー加工の基礎	ディスクレーザー	ディスクレーザー、短パルスレーザー、グリーンの波長変換 レーザー,光源・加工機開発、レーザー加工技術	太田道春:トルンプ株式会社
8	22					レーザー加工技術	レーザーシミュレーション1	シミュレーションの基礎と適応事例、金属加工、AM、CFRP	大久保友雅 :東京工科大学
	23					レーザー加工技術	レーザーシミュレーション2	切断 FLOW-3Dシミュレーションと動画を含めた加工事例の内容	田嶋文雄: 株式会社フローサイエンスジャパン
	24		9/24	_	0	レーザー加工技術	レーザーものづくり・ケーススタディ1	『レーザー加工の活用戦略:	休式会社プローリイエンスシャハン 【監修】長谷川和男:
9	25		(水) 14:00開始	_	0	レーザー加工技術	(対面式のみ) レーザーものづくり・ケーススタディ2	設備選定と競争力向上のための議論と実践』 ~最適な設備・品質・コストを考える~	光産業創成大学院大学
	26	FUSE	9/25 (木)		0	レーザー加工技術	(対面式のみ) プロセスモニタリング・インプロセス制	レーザー溶接、リアルタイムモニタリング、センシング、フィード	片山聖二: 大阪大学 名誉教授
	-			0			御による溶接の高品質化	バック制御、溶込み特性、ポロシティ、凝固割れ、OCT 新規加工システム開発、プロセスモニタリング、IoT、事業	株式会社ナ・デックス 門屋輝慶:
10	27					レーザー加工技術	プロセスモニタリング	化検討、OCT	Laser Technology Fountain
	28		9:45開始			レーザー加工技術	ものづくりと機械学習1	ものづくりのlot, 教師あり学習(回帰, 分類, 波形処理)	楠本利行: ライアグ・テック株式会社
	29					レーザー加工技術	ものづくりと機械学習2	加工条件の推奨, モニタリングによる逸脱検知と逸脱原因の 推定	森清和: 神奈川県立産業技術総合研究所
	30	浜松工業技術	4.1 4.3		0	レーザー加工技術	レーザー加工実習2A (対面式のみ)	レーザー加工実習 レーザー樹脂溶着・強度評価 樹脂切断・彫刻加工	静岡県工業技術研究所
11	21	支援センター	いずれか	-		1##_hn_++-#	1.一#一加丁中羽2.0 (壮王十0.1)	レーザー加工実習 短パルスレーザー加工	所岡宗工業技術支援センター 浜松工業技術支援センター
	31		10:00開始			レーザー加工技術	レーザー加工実習2B (対面式のみ)	(内部加工・表面処理・穴開け加工) オンデマンドものづくりのためのツールとしての深層学習	
12	32		10/23(木) 14:00開始	0	0	レーザー加工技術	レーザーものづくりシンポジウム	~レーザー加工のデジタルツイン化へ向けて~ :Alを活用したレーザー加工の活用	谷俊太郎: 理化学研究所 光量子工学研究センター
	33					レーザー加工技術	AM・3Dプリンタ1	:Alを活用したレーサー加工の活用 AM技術概要: SLM,LMDと材料、EBM・EBAM・WAAM との比較	木寺正晃:愛知産業株式会社
	34	FUSE	10/24			レーザー加工技術	AM・3Dプリンタ2	レーザー加工の認識の仕方、業界動向説明	塚本雅裕:大阪大学 接合科学研究所
13	35		(金)	0	0		各種産業におけるプラスチック材料の	青色光源開発とAM・レーザーコーティングの産業応用電子電気産業、他各種産業におけるプラスチック材料加工に	
			9:45開始			産業応用	レーザー微細加工	おけるレーザー微細加工のアプリケーション・加工システム 半導体、レーザ、ステルスダイシング、LCOS-SLM(空間光	日野敦司:光産業創成大学院大学
	36		44.7			産業応用	半導体産業における動向	変調器) 自動車産業での応用(ユーザー視点)、ハイパワーレーザー応	荻原孝文:浜松ホトニクス株式会社
14	37		11/27 (木)	0	0	産業応用	自動車産業における動向	用	樽井大志:日産自動車株式会社
	38		14:00開始			産業応用	重工業産業における動向	ハイパワーレーザー応用、レーザー溶接、航空・宇宙応用 橋梁・大型構造物への応用	杉野友洋:株式会社IHI
	39	- FUSE		0	0	産業応用	ファイバーレーザーの産業応用	サプライヤー視点による光源・加工機開発、欧米における産 業応用	宮田一成: IPGフォトニクスジャパン株式会社
1-	40		11/28			産業応用	医療分野での事業化事例	医療分野(眼科)、可視光レーザー、生体加工、超短バルス レーザー	荒木隼悟:株式会社ニデック
15	41		(金) 9:45開始	0		産業応用	レーザージョブショップの事業化事例	レーザージョブショップ、試作事業、レーザー加工技術の捉	刀原寛孝:株式会社ナノプロセス
	42					産業応用	事業化構想とその取り組み	え方 インタフェース志向のエンジニアリングで日本の産業レー	若林浩次:
		会場	日程	総合	プラス 実習	分類	主題	ザー事業の新興を狙うヒントを提言 キーワード	スマートレーザーエンジニアリング 講師